Parallel preoptic pathways for thermoregulation.

نویسندگان

  • Kyoko Yoshida
  • Xiaodong Li
  • Georgina Cano
  • Michael Lazarus
  • Clifford B Saper
چکیده

Sympathetic premotor neurons in the rostral medullary raphe (RMR) regulate heat conservation by tail artery vasoconstriction and brown adipose tissue thermogenesis. These neurons are a critical relay in the pathway that increases body temperature. However, the origins of the inputs that activate the RMR during cold exposure have not been definitively identified. We investigated the afferents to the RMR that were activated during cold by examining Fos expression in retrogradely labeled neurons after injection of cholera toxin B subunit (CTb) in the RMR. These experiments identified a cluster of Fos-positive neurons in the dorsomedial hypothalamic nucleus and dorsal hypothalamic area (DMH/DHA) with projections to the RMR that may mediate cold-induced elevation of body temperature. Also, neurons in the median preoptic nucleus (MnPO) and dorsolateral preoptic area (DLPO) and in the A7 noradrenergic cell group were retrogradely labeled but lacked Fos expression, suggesting that they may inhibit the RMR. To investigate whether individual or common preoptic neurons project to the RMR and DMH/DHA, we injected CTb into the RMR and Fluorogold into the DMH/DHA. We found that projections from the DLPO and MnPO to the RMR and DMH/DHA emerge from largely separate neuronal populations, indicating they may be differentially regulated. Combined cell-specific lesions of MnPO and DLPO, but not lesions of either one alone, caused baseline hyperthermia. Our data suggest that the MnPO and DLPO provide parallel inhibitory pathways that tonically inhibit the DMH/DHA and the RMR at baseline, and that hyperthermia requires the release of this inhibition from both nuclei.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense.

Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the ...

متن کامل

Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense

Morrison SF. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central neural pathways for thermoregulatory cold defense. J Appl Physiol 110: 1137–1149, 2011. First published January 26, 2011; doi:10.1152/japplphysiol.01227.2010.—Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental t...

متن کامل

Role of the preoptic-anterior hypothalamus in thermoregulation and fever.

Lesion and thermal stimulation studies suggest that temperature regulation is controlled by a hierarchy of neural structures. Effector areas for specific thermoregulatory responses are located throughout the brain stem and spinal cord. The preoptic region, in and near the rostral hypothalamus, acts as a coordinating center and strongly influences each of the lower effector areas. The preoptic a...

متن کامل

Effect of Lateral Preoptic Area Lesion on Sleep Wakefulness and Thermoregulation In Cold Acclimatized Rats

Hypothalamic temperature (Thy) alteration is one of the important stimuli that brings about thermoregulatory measures including the changes in wakefulness and muscular activity. The role of the lateral preoptic area (lPOA) in thermoregulation and sleep is well documented. But it is not known whether the integrity of the lPOA is essential for bringing about the changes in sleep-wakefulness (S-W)...

متن کامل

The medial septum acts through the medial preoptic area for thermoregulation and works with it for sleep regulation.

The chronic changes in sleep-wakefulness (S-W), body temperature (Tb), locomotor activity (LMA) and thermal preference were studied in male Wistar rats after the destruction of neurons in both the medial preoptic area (mPOA) and the medial septum (MS) by intracerebral injection of N-methyl-D-aspartic acid. An increase in the Tb, and a preference for higher ambient temperature (Tamb) of 30 degre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 38  شماره 

صفحات  -

تاریخ انتشار 2009